Masaaki Nakayama, Dr.Sci.
Professor
Department of Applied Physics
Graduate School of Engineering
Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku,
Osaka 558-8585, JAPAN
(Email) nakayama@a-phys.eng.osaka-cu.ac.jp
(phone&fax) +81-6-6605-2739

Research Field: Optical properties and functions of condensed matter

Current Theme:

(1)   Optical properties and functions of semiconductor nanostructures such as superlattices, quantum wells, and quantum dots.

(2)   Excitonic processes in cuprous-halide thin films grown by vacuum deposition and ZnO thin films grown by rf-magnetron sputtering and pulsed laser deposition.

(3)   Preparation of semiconductor microcavities and control of optical responses of exciton polaritons.

(4)   Terahertz (THz) electromagnetic wave radiation from semiconductor epitaxial structures including qunatum wells and superlattices.

Publication:

  1. Observation of diffusive and dispersive profiles of the nonequilibrium polariton-condensate dispersion relation in a CuBr microcavity:
    M. Nakayama and M. Ueda,
    Phys. Rev. B 95, pp. 125315-1--125315-7 (2017).
  2. Initial process of photoluminescence dynamics of self-trapped excitons in a ƒΐ-Ga2O3 single crystal:
    S. Yamaoka, Y. Furukawa, and M. Nakayama,
    Phys. Rev. B 95, pp. 094304-1--094304-5 (2017).
  3. Longitudinal optical phonon-plasmon coupled mode in undoped GaAs/n-type GaAs epitaxial structures observed by Raman scattering and terahertz time-domain spectroscopic measurements: Difference in observed modes and initial polarization effects:
    H. Takeuchi, T. Sumioka, and M. Nakayama,
    IEEE Trans. THz Sci. Technol. 7, pp. 124-130 (2017).
  4. Cavity effect on a biexciton in a CuCl microcavity:
    Y. Mitsumori, S. Matsuura, S. Uchiyama, K. Edamatsu, and M. Nakayama,
    Phys. Rev. B 94, pp. 115308-1--115308-5 (2016).
  5. Unique characteristics of nonequilibrium carrier transport dynamics in an undoped GaAs/n-type GaAs epitaxial structure:
    T. Hasegawa and M. Nakayama,
    Appl. Phys. Express 9, pp. 071001-1--071001-4 (2016).
  6. Blueshifted flat dispersion of exciton-polariton condensates in a CuBr microcavity:
    M. Nakayama, K. Murakami, and D. Kim,
    J. Phys. Soc. Jpn. 85, pp. 054702-1--054702-7 (2016).
  7. Photoluminescence from exciton-electron inelastic scattering in a GaAs/AlAs multiple-quantum-well structure:
    S. Nakanishi, Y. Furukawa, and M. Nakayama,
    Phys. Status Solidi C 13, pp. 109-112 (2016).
  8. Photoluminescence dynamics of formation of electron-hole droplets in a GaAs/AlAs type-II superlattice:
    Y. Furukawa and M. Nakayama,
    Phys. Status Solidi C 13, pp. 101-104 (2016).
  9. Evidence for formation of self-trapped excitons in a ƒΐ-Ga2O3 single crystal:
    S. Yamaoka and M. Nakayama,
    Phys. Status Solidi C 13, pp. 93-96 (2016).
  10. Polariton dispersion relations under condensation in a CuBr microcavity:
    M. Nakayama, K. Murakami, and D. Kim,
    Phys. Status Solidi C 13, pp. 81-84 (2016).
  11. Dynamical formation process of electron-hole droplets in a GaAs/AlAs type-II superlattice:
    Y. Furukawa and M. Nakayama,
    J. Phys. Soc. Jpn. 85, pp.034701-1--034701-6 (2016).
  12. Polariton condensation effects on photoluminescence properties in a CuBr microcavity:
    M. Nakayama, K. Murakami, and D. Kim,
    J. Phys.: Conf. Ser. 619, pp.012015-1--012015-4 (2015).
  13. Photoluminescence observation of electron-hole droplets in a GaAs/AlAs type-II superlattice:
    Y. Furukawa and M. Nakayama,
    J. Phys.: Conf. Ser. 619, pp.012005-1--012005-4 (2015).
  14. Effects of surface modification on photoluminescence properties of self-assembled monolayer of CdSe quantum dots:
    T. Watanabe, H. Yokota, M. Nakayama, and D. Kim,
    J. Phys.: Conf. Ser. 619, pp.012024-1--012024-4 (2015).
  15. Theory for lifetime of an exciton incoherently created below its resonance frequency by inelastic scattering:
    M. Bamba, S. Wakaiki, H. Ichida, K. Mizoguchi, D. Kim, M. Nakayama, and Y. Kanemitsu,
    Phys. Rev. B 91, pp.235205-1--235205-13 (2015).
  16. Systematic investigation of effects of exciton-acoustic-phonon scattering on photoluminescence rise times of free excitons in GaAs/Al0.3Ga0.7As single quantum wells:
    M. Nakayama, T. Ohno, and Y. Furukawa,
    J. Appl. Phys. 117, pp.134306-1--134306-6 (2015).
  17. Unique properties pf photoluminescence excitation spectra in a Eu-doped GaN epitaxial film:
    M. Nakayama, S. Nakamura, H. Takeuchi, A. Koizumi, and Y. Fujiwara,
    Appl. Phys. Lett. 106, pp.012102-1--012102-4 (2015).
  18. Photoluminescence characteristics of polariton condensation in a CuBr microcavity:
    M. Nakayama, K. Murakami, Y. Furukawa, and D. Kim,
    Appl. Phys. Lett. 105, pp.021903-1--021904-4 (2014).
  19. Photon-field-shape effects on Rabi splitting energies in ZnO microcavities:
    M. Kawakami, T. Kawase, D. Kim, and M. Nakayama,
    Opt. Mater. 36, pp. 1622-1626 (2014).
  20. Polariton characteristics of photoluminescence dynamics of exciton-exciton scattering in GaAs/AlAs multiple quantum wells:
    Y. Furukawa, H. Takeuchi, and M. Nakayama,
    J. Phys. Soc. Jpn. 83, pp. 054709-1--054709-6 (2014).
  21. High-sensitivity polarization modulation reflectance spectroscopy of cavity polaritons in a ZnO microcavity:
    T. Hasegawa, R. Kishimoto, Y. Takagi, T. Kawase, D. Kim, and M. Nakayama,
    Appl. Phys. Express 7, pp. 032003-1--032003-4 (2014).
  22. Observation of bound and antibound states of cavity polariton pairs in a CuCl microcavity:
    S. Matsuura, Y. Mitsumori, H. Kosaka, K. Edamatsu, K. Miyazaki, D. Kim, M. Nakayama, G. Oohata, H. Oka, H. Ajiki, and H. Ishihara
    Phys. Rev. B 89, pp. 035317-1--035317-6 (2014).
  23. Correlation between the intra-atomic Mn3+ photoluminescence and antiferromagnetic transition in an YMnO3 epitaxial film:
    M. Nakayama, Y. Furukawa, K. Maeda, T. Yoshimura, H. Uga, and N. Fujimura
    Appl. Phys. Express 7, pp. 023002-1--23002-4 (2014).
  24. Precise control of photoluminescence enhancement and quenching of semiconductor quantum dots using localized surface plasmons in metal nanoparticles:
    D. Kim, H. Yokota, T. Taniguchi, and M. Nakayama
    J. Appl. Phys. 114, pp. 154304-1--154304-5 (2013).
  25. Radiation of terahertz electromagnetic waves from coherent longitudinal optical phonons in multiple quantum wells (Review):
    M. Nakayama
    J. Nanoelectron. Optelectron. 8, pp. 415-424 (2013).
  26. Voltage-controllable terahertz radiation from coherent longitudinal optical phonons in a p-i-n diode structure of GaAs:
    M. Nakayama, S. Asai, H. Takeuchi, O. Ichikawa, and M. Hata,
    Appl. Phys. Lett. 103, pp. 141109-1--141109-4 (2013).
  27. Photoluminescence dynamics of excitons at the mini-Brillouin-zone edge in a GaAs/AlAs superlattice:
    M. Nakayama, T. Yamashita, and T. Hasegawa,
    J. Cryst. Growth 378, pp. 61-64 (2013).
  28. Characteristics of ultrafast optical responses originating from non-equilibrium carrier transport in undoped GaAs/n-type GaAs epitaxial structures:
    T. Hasegawa, Y. Takagi, H. Takeuchi, H. Yamada, M. Hata, and M. Nakayama,
    J. Appl. Phys. 113, pp. 203506-1--203506-6 (2013).
  29. Enhancement mechanism of terahertz radiation from coherent longitudinal optical phonons in undoped GaAs/n-type GaAs epitaxial structures:
    S. Tsuruta, H. Tekuchi, H. Yamada, M. Hata, and M. Nakayama,
    J. Appl. Phys. 113, pp. 143502-1--143502-5 (2013).
  30. Terahertz radiation from the coherent longitudinal optical phonon-plasmon coupled mode in an i-GaAs/n-GaAs epitaxial structure:
    S. Tsuruta, H. Takeuchi, and M. Nakayama,
    J. Phys: Conf. Ser. 417, pp. 012051-1--012051-6 (2013).
  31. Photon-field-shape effects on Rabi splitting energies in CuCl microcavities:
    T. Kawase, K. Miyazaki, D. Kim, and M. Nakayama,
    Eur. Phys. J. B 86, pp. 69-1--69-6 (2013).
  32. Control of Rabi-splitting energies of exciton polaritons in CuI microcavities:
    M. Nakayama, M. Kameda, T. Kawase, and D. Kim,
    Eur. Phys. J. B 86, pp. 32-1--32-5 (2013).
  33. Characteristics of cavity polaritons in a CuBr microcavity:
    Y. Kanatani, T. Kawase, D. Kim, and M. Nakayama,
    Eur. Phys. J. B 85, pp. 390-1--309-6 (2012).
  34. Photogenerated-carrier-induced band bending effects on generation of a coherent longitudinal optical phonon in a GaAs buffer layer optically masked by a GaSb top epitaxial layer:
    H. Takeuchi, S. Tsuruta, and M. Nakayama,
    Phys. Status Solidi C 9, pp. 2610-2613 (2012).
  35. Temperature dependence of cavity-polariton energies in ZnO and CuCl microcavities:
    T. Kawase, K. Miyazaki, D. Kim, and M. Nakayama,
    J. Appl. Phys. 112, pp.0935125-1--093512-6 (2012).
  36. Quantum beats of type-I and type-II excitons in an InxGa1-xAs/GaAs strained quantum well:
    O. Kojima, K. Mizoguchi, and M. Nakayama,
    J. Appl. Phys. 112, pp.043522--043522-4 (2012).
  37. Active-layer-thickness dependence of Rabi splitting energies in ZnO microcavities:
    T. Kawase, D. Kim, and M. Nakayama,
    Phys. Status Sokidi C 9, pp.1797-1800 (2012).
  38. Control of Rabi splitting energies in CuCl microcavities with HfO2/SiO2 distributed Bragg reflectors:
    M. Nakayama, K. Miyazaki, T. Kawase, and D. Kim,
    Phys. Procedia 29, pp.6-11 (2012).
  39. Time evolution of terahertz electromagnetic waves from undoped GaAs/n-type GaAs epitaxial layer structures clarified with use of a time-partitioning Fourier transform method:
    H. Takeuchi, S. Tsuruta, H. Yamada, M. Hata, and M. Nakayama,
    Phys. Procedia 29, pp.30-35 (2012).
  40. Intense monochromatic terahertz electromagnetic waves from coherent GaAs-like longitudinal optical phonons in (11n)-oriented GaAs/In0.1Al0.9As strained multiple quantum wells:
    H. Takeuchi, S. Asai, S. Tsuruta, and M. Nakayama,
    Appl. Phys. Lett. 100, pp.242107-1--242107-4 (2012).
  41. Exciton polaritons in a CuBr microcavity with HfO2/SiO2 distributed Bragg reflectors:
    M. Nakayama, Y. Kanatanai, T. Kawase, and D. Kim,
    Phys. Rev. B 85, 205320-1--205320-5 (2012).
  42. Ultrafast optical response originating from carrier-transport processes in undoped GaAs/n-type GaAs epitaxial structures:
    T. Hasegawa, Y. Takagi, H. Takeuch, H. Yamada, M. Hata, and M. Nakayama,
    Appl. Phys. Lett. 100, 211902-1--211902-5 (2012).
  43. Frequency-tunable quantum beats under a Franz-Keldysh oscillation condition in a GaAs/AlxxGa1-xAs superlattice:
    T. Hasegawa, Y. Takagi, and M. Nakayama,
    Appl. Phys. Express 5, 041202-1--041202-3 (2012).
  44. Electric field effects on reduced effective masses of minibands at the mini-Brillouin-zone center and edge in a GaAs/AlAs superlattice:
    M. Nakayama and T. Kawabata,
    J. Appl. Phys. 111, 053523-1--053523-5 (2012).
  45. Terahertz spectroscopy of dynamics of coupling between the coherent longitudinal optical phonon and plasmon in the surge current of instantaneously photogenerated carriers flowing through the i-GaAs layer of an i-GaAs/n-GaAs epitaxial structure
    H. Takeuchi, S. Tsuruta, and M. Nakayama,
    J. Appl. Phys. 110, 013515-1--013515-6 (2011).
  46. Cavity polaritons of heavy-hole and light-hole excitons in a CuI microcavity:
    M. Nakayama, M. Kameda, T. Kawase, and D. Kim,
    Phys. Rev. B 83, 235325-1--235325-5 (2011).
  47. Electric field effects on excitonic quantum beats in a single quantum well embedded in a GaAs/AlAs superlattice:
    T. Hasegawa, Y. Takagi, and M. Nakayama,
    Phys. Rev. B 83, 205309-1- -205309-6 (2011).
  48. Emission of the terahertz electromagnetic wave from coherent longitudinal optical phonons in a GaAs buffer layer optically masked by a GaSb top epitaxial layer:
    H. Tekeuchi, S. Tsuruta, and M. Nakayama,
    Appl. Phys. Lett. 96, 151905-1--151905-3 (2011).
  49. Control of exciton-photon interactions in CuCl microcavities:
    M. Nakayama, K. Miyazaki, T. Kawase, and D. Kim,
    Phys. Rev. B 83, 075318-1--075318-5 (2011).
  50. Frequency-tunable terahertz electromagnetic wave emitters based on undoped GaAs/n-type GaAs epitaxial layer structures utilizing sub-picosecond-range carrier-transport processes:
    H. Takeuchi, J. Yanagisawa, S. Tsuruta, H. Yamada, M. Hata, and M. Nakayama,
    J. Lumin. 131, 531-534 (2011).
  51. Exciton polaritons in ZnO microcavities with different active layer thicknesses:
    T. Kawase, D. Kim, K. Miyazaki, and M. Nakayama,
    Phys. Status Solidi B 248, 460-463 (2011).
  52. Photoluminescence properties of exciton-exciton scattering in a dilute nitride GaAs1-xNx epitaxial film:
    M. Nakayama, J. Hashimoto, and Y. Maeda,
    Phys. Status Solidi C 8, 372-374 (2011).
  53. Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures:
    H. Takeuchi, J. Yanagisawa, S. Tsuruta, H. Yamada, M. Hata, and M. Nakayama,
    Phys. Status Solidi C 8, 343-345 (2011).
  54. Photoluminescence decay profiles of exciton-exciton scattering in a ZnO thin film:
    S. Wakaiki, H. Ichida, K. Mizoguchi, D. Kim, Y. Kanemitsu, and M. Nakayama,
    Phys. Status Solidi C 8, 116-119 (2011).
  55. Coherent control of terahertz wave from coherent longitudinal optical phonon in a GaAs/AlAs multiple-quantum-well structure:
    K. Mizoguchi, Y. Kanzawa, G. Oohata, S. Saito, K. Sakai, and M. Nakayama,
    Jpn. J. Appl. Phys. 49, 120202-1--120202-3 (2010).
  56. Upconversion of photoluminescence due to subband resonances in a GaAs/AlAs multiple quantum well structure:
    T. Hasegawa, S. Okamotob, and M. Nakayama,
    Physica E 42, 2648-2651 (2010).
  57. Photoluminescence properties of exciton-exciton scattering in GaAs/AlAs multiple quantum wells:
    M. Nakayama, T. Hirao, and T. Hasegawa,
    Physica E 42, 2644-2647 (2010).
  58. Characteristics of exciton polaritons in a ZnO microcavity:
    T. Kawase, S. Komura, K. Miyazaki, D. Kim, and M. Nakayama,
    Physica E 42, 2567-2570 (2010).
  59. Frequency shift of terahertz electromagnetic waves originating from sub-picosecond-range carrier transport in undoped GaAs/n-type GaAs epitaxial layer structures:
    H. Takecuhi, J. Yanagisawa, S. Tsuruta, H. Yamada, M. Hata, and M. Nakayama,
    Jpn. J. Appl. Phys. 49, 082001-1--082001-5 (2010).
  60. Effects of distributed Bragg reflectors on temporal stability of CuCl microcavities:
    K. Miyazaki, D. Kim, T. Kawase, T. Kameda, and M. Nakayama,
    Jpn. J. Appl. Phys. 49, 042802-1--042802-4 (2010).
  61. Observation and quantification of the direction reversal of the surface band bending in GaAs1-xNx using terahertz electromagnetic wave and photoreflectance measurements:
    H. Takeuchi, J. Yanagisawa, J. Hashimoto, and M. Nakayama,
    Phys. Status Solidi C 7, 1844-1846 (2010).
  62. Photoluminescence from exciton-exciton scattering in a GaAs1-xNx thin film:
    J. Hashimoto, Y. Maeda, and M. Nakayama,
    Appl. Phys. Lett. 96, 081910-1--081910-3 (2010).
  63. Direction reversal of the surface band bending in GaAs-based dilute nitride epitaxial layers investigated by polarity of terahertz electromagnetic waves:
    H. Takeuchi, J. Yanagisawa, and M. Nakayama,
    Phys. Procedia 3, 1109-1113 (2010).
  64. Temperature dependence of the energy transfer of exciton states in bilayer structures of CdSe/ZnS quantum dots:
    D. Kim, K. Okazaki ,and M. Nakayama,
    Phys. Rev. B 80, 045322-1--045322-5 (2009).
  65. Characteristics of photoluminescence due to exciton-exciton scattering in GaAs/AlAs multiple quantum well:
    M. Nakayama T. Hirao, and T. Hasegawa,
    J. Appl. Phys. 105, 123525-1--123525-4 (2009).
  66. Effect of nitrogen incorporation on a direction of a surface band bending investigated by polarity of terahertz electromagnetic waves in GaAs1-xNx epitaxial layer:
    H. Takeuchi, J. Yanagisawa, J. Hashimoto, and M. Nakayama,
    J. Appl. Phys. 105, 093539-1--093539-2 (2009).
  67. Enhanced terahertz emission from coherent longitudinal optical phonons in a quantum well structure under applied bias:
    K. Mizoguchi, Y. Kanzawa, S. Saito, K. Sakai, and M. Nakayama,
    phys. stat. sol. (c) 6, 358-361 (2009).
  68. Experimental determination of exciton dispersion relation from center-of-mass quantization effect in PbI2 thin films:
    J. Hashimoto and M. Nakayama,
    phys. stat. sol. (c) 6, 358-361 (2009).
  69. Lattice-mismatch-strain effects on excitons in GaAs1-xNx/GaAs heterostructures:
    J. Hashimoto and M. Nakayama,
    phys. stat. sol. (c) 6, 358-361 (2009).
  70. Exciton polaritons in bulk CuCl microcavities grown by vacuum deposition:
    G. Oohata, T. Nishioka, D. Kim, H. Ishihara, and M. Nakayama,
    phys. stat. sol. (c) 6, 280-283 (2009).
  71. Pump-energy dependence of usual and unusual Bloch oscillations in a GaAs/AlAs superlattice:
    T. Hasegawa, K. Mizoguchi, and M. Nakayama,
    phys. stat. sol. (c) 6, 264-267 (2009).
  72. Photoluminescence dynamics of exciton-exciton scattering in a lightly alloyed InGaN thin film:
    M. Nakayama and K. Sakaguchi,
    Appl. Phys. Lett. 93, 261904-1--261904-3 (2008).
  73. Experimental verification of Forster energy transfer between semiconductor quantum dots:
    D. Kim, S. Okahara, Y. Shim, and M. Nakayama,
    Phys. Rev. B 78, 153301-1--153301-4 (2008).
  74. Observation of exciton polaritons in a ZnO microcavity with HfO2/SiO2 distributed Bragg reflectors:
    M. Nakayama, S. Komura, T. Kawase, and D. Kim,
    J. Phys. Soc. Jpn. 77, 093705-1--093705-4 (2008).
  75. Temperature dependence of photoluminescence dynamics in colloidal CdS quantum dots:
    D. Kim, T. Mishima, K. Tomihira, and M. Nakayama,
    J. Phys. Chem. C 112, 10668-10673 (2008).
  76. Highly efficient preparation of size-controlled CdS quantum dots with high photoluminescence yield:
    D. Kim, K. Tomihira, S. Okahara, and M. Nakayama,
    J. Crystal Growth 310, 4244-4247 (2008).
  77. High sensitivity of photoluminescence-excitation spectroscopy for probing effects of plasma-induced surface damages on carrier transport in AlxGa1-xN/GaN heterostructures:
    H. Takeuchi, T. Shirahama, Y. Yamamoto, Y. Kamo, T. Kunii, T. Oku, H. Tanaka, and M. Nakayama,
    phys. stat. sol. (c) 5, 1525-1528 (2008).
  78. Ultrafast photoluminescence dynamics in ZnO thin films under intense excitation conditions:
    H. Ichida, S. Wakaiki, K. Mizoguchi, D. Kim, Y. Kanematsu, and M. Nakayama,
    J. Lumin. 128, 1059-1061 (2008).
  79. Excitonic quantum beat at the mini-Brillouin-zone boundary in a GaAs/AlAs superlattice:
    T. Hasegawa, K. Mizoguchi, and M. Nakayama,
    J. Lumin. 128, 1056-1058 (2008).
  80. Enhancement of terahertz radiation from coherent optical phonons via impulsive interference of excitons in GaAs/AlAs multiple quantum wells:
    M. Nakayama, S. Itoh, K. Mizoguchi, S. Saito, K. Akahane, N. Yamamotoc, and K. Sakai,
    J. Lumin. 128, 1043-1045 (2008).
  81. Photoluminescence due to exciton-exciton scattering in a GaAs/AlAs multiple quantum well:
    T. Hirao, T. Hasegawa, andM. Nakayama,
    Appl. Phys. Express 128, 960-962 (2008).
  82. Generation of intense and monochromatic terahertz radiation from coherent longitudinal optical phonons in GaAs/AlAs multiple quantum wells at room temperature:
    M. Nakayama, S. Ito, K. Mizoguchi, S. Saito, and K. Sakai,
    Appl. Phys. Express 1, 012004-1--012004-3 (2008).
  83. Observation of the second-nearest-neighbor Bloch oscillation in a GaAs/AlAs superlattice:
    T. Hasegawa, K. Mizoguchi, and M. Nakayama,
    phys. stat. sol. (c) 5, 203-206 (2008).
  84. Transformation process from quantum beats of miniband excitons to Bloch oscillations in a GaAs/AlAs superlattice under applied electric fields:
    T. Hasegawa, K. Mizoguchi, and M. Nakayama,
    Phys. Rev. B 76, 115323-1--115323-6 (2007).
  85. Energy-relaxation dynamics of photogenerated excitons observed from time-resolved photoluminescence of exciton-exciton scattering in CuI thin films:
    H. Ichida, Y. Kanematsu, K. Mizoguchi, D. Kim, andM. Nakayama,
    Phys. Rev. B 76, 085417-1--085417-5 (2007).
  86. Photoluminescence-excitation spectroscopy as a highly sensitive probe for carrier transport processes affected by surface damages in AlxGa1-xN//GaN heterostructures:
    H. Takeuchi, T. Shirahama, Y. Yamamoto, Y. Kamo, T. Kunii, T. Oku, H. Tanaka, andM. Nakayama,
    J. Appl. Phys. 102, 043510--043510-8 (2007).
  87. Observation of biexciton-resonant hyper-parametric scattering in SiO2/CuCl layered structures:
    M. Nakayama, T. Nishioka, S.Wakaiki, G. Oohata, K. Mizoguchi, D. Kim, and K. Edamatsu,
    Jpn. J. Appl. Phys. 46, L234-L236 (2007).
  88. Self-assembled formation of ZnO hexagonal micropyramids with high luminescence efficiency:
    D. Kim, S. Wakaiki, S. Komura, and M. Nakayama,
    Appl. Phys. Lett. 90, 101918-1--101918-3 (2007).
  89. Photocurrent bistability in a GaAs/AlxGa1-xAs superlattice under resonant-coupling conditions of Wannier-Stark-localization states:
    T. Hasegawa and M. Nakayama,
    J. Appl. Phys. 101, 043512-1--043512-5 (2007).
  90. Terahertz radiation from coherent confined optical phonons in GaAs/AlAs multiple quantum wells:
    M. Nakayama, K. Mizoguchi, O. Kojima, T. Furuichi, A. Mizumoto, S. Saito, A. Shouji, and K. Sakai,
    phys. stat. sol. (a) 204, 518-521 (2007).
  91. Optical characterization of improvement of carrier localization in InGaAsN/GaAs single quantum wells by addition of Sb flux to interfaces:
    Y. Iguchi, T. Ishizuka, T. Yamada, S. Takagishi, K. Nomura, and M. Nakayama,
    J. Crystal Growth 298, 540-543 (2007).
  92. Optical properties of GaInNAs quantum wells on misoriented substrates grown by MOVPE:
    T. Ishizuka, H. Doi, T. Katsuyama, J. Hashimoto, and M. Nakayama,
    J. Crystal Growth 298, 116-120 (2007).
  93. High sensitivity of Franz-Keldysh oscillations in photoreflectance spectra for probing morphology in AlxGa1-xN/GaN heterostructures:
    H. Takeuchi, Y. Yamamoto, Y. Kamo, T. Kunii, T. Oku, S. Wakaiki, and M. Nakayama,
    Eur. Phys. J. Appl. Phys. 37, 119-122 (2007).
  94. Miniband-width effects on Wannier-Stark localization of the first and second quantized states in a GaAs/AlAs superlattice:
    T. Hasegawa and M. Nakayama,
    J. Lumin. 122-123, 841-843 (2007).
  95. Stretched exponential profiles of photoluminescence decays related to localized states in InGaAsN/GaAs single-quantum wells:
    M. Nakayama, Y. Iguchi, K. Nomura, J. Hashimoto, T. Yamada and S. Takagishi,
    J. Lumin. 122-123, 753-755 (2007).
  96. Photoluminescence dynamics of energy transfer between CdS quantum dots prepared by a colloidal method:
    K. Tomihira, D. Kim, and M. Nakayama,
    J. Lumin. 122-123, 471-473 (2007).
  97. Dynamical process of exciton-exciton scattering in CuI thin films:
    H. Ichida, T. Shimomura, K. Mizoguchi, D. Kim, Y. Kanematsu, and M. Nakayama,
    J. Lumin. 122-123, 396-398 (2007).
  98. Photoluminescence properties and energy transfer processes from excitons to Mn2+ ions in Mn2+-doped CdS quantum dots prepared by a reverse-micelle method:
    D. Kim, M. Miyamoto and M. Nakayama,
    J. Appl. Phys. 100, 094313-1--094313-6 (2006).
  99. Characterization of terahertz electromagnetic waves from coherent longitudinal optical phonons in GaAs/AlAs multiple quantum wells:
    K. Mizoguchi, A, Mizumoto, M. Nakayama, S. Saito, A. Shoji, K. Sakai, N. Yamamoto, and K. Akahane,
    J. Appl. Phys. 100, 103527-1--103527-7 (2006).
  100. Optical properties of ZnO thin films grown by an rf-magnetron sputtering method:
    S. Wakaiki, D. Kim, S. Komura, K. Mizoguchi, and M. Nakayama,
    phys. stat. sol. (c) 3, 3504-3507 (2006).
  101. Ultrafast photoluminescence dynamics of biexcitons in a CuCl thin film grown by vacuum deposition:
    M. Nakayama, S. Wakaiki, K. Mizoguchi, D. Kim, H. Ichida, and Y. Kanematsu,
    phys. stat. sol. (c) 3, 3464-3467 (2006).
  102. Photoluminescence due to inelastic scattering processes of excitons in a GaN thin film grown by metalorganic vapor phase epitax:
    H. Tanaka, M. Ando, T. Uemura, andM. Nakayama
    phys. stat. sol. (c) 3, 3312-3515 (2006).
  103. Center-of-mass quantization of excitons in PbI2 thin films grown by vacuum deposition
    M. Nakayama, D. Kim, and H. Ishihara,
    Phys. Rev. B 74, 073306-1--073306-4 (2006).
  104. Effects of a cap layer on built-in electric fields of AlGaN/GaN heterostructures non-destructively probed by Franz-Keldysh oscillations:
    H. Takeuchi, Y. Yamamoto, Y. Kamo, T. Oku, and M. Nakayama,
    Eur. Phys. J. B 52, 311-314 (2006).
  105. Photoluminescence and optical gain due to exciton-electron scattering in a high quality GaN thin film:
    M. Nakayama, H. Tanaka, M. Ando, and T. Uemura,
    Appl. Phys. Lett. 88, 031909-1--031909-3 (2006) .
  106. Photoluminescence properties peculiar to the Mn-related transition in a lightly alloyed ZnMnO thin film grown by pulsed laser deposition:
    M. Nakayama, H. Tanaka, K. Masuko, T. Fukushima, A. Ashida, and N. Fujimura,
    Appl. Phys. Lett. 88, 241908-1--241908-3 (2006).
  107. Temperature dependence of dynamical processes of photoluminescence from exciton-exciton scattering in CuI thin films:
    H. Ichida, K. Mizoguchi, D. Kim, Y. Kanematsua, and M. Nakayama,
    J. Lumin. 119-120, 457-461 (2006).
  108. Photoluminescence properties related to localized states in colloidal PbS quantum dots:
    D. Kim, T. Kuwabara, and M. Nakayama,
    J. Lumin. 119-120, 214-218 (2006).
  109. Electroreflectance observation of transformation processes of the first and second minibands to Wannier-Stark localization states in a GaAs/AlAs superlattice:
    T. Hasegawa and M. Nakayama,
    Jpn. J. Appl. Phys. 44, 8340-8344 (2005).
  110. Strong enhancement of band-edge photoluminescence in CdS quantum dots prepared by a reverse-micelle method:
    D. Kim, M. Miyamoto, T. Mishima, and M. Nakayama,
    J. Appl. Phys. 98, 083514-1--083514-4 (2005).
  111. Photoluminescence from exciton-exciton scattering in a lightly alloyed InGaN thin film under intense excitation conditions
    M. Nakayama, R. Kitano, M. Ando, and T. Uemura,
    Appl. Phys. Lett. 87, 092106-1--092106-3 (2005).
  112. Intense terahertz radiation from optical phonons in GaAs/AlAs multiple quantum wells:
    K. Mizoguchi, T. Furuichi, O. Kojima, M. Nakayama, S. Saito, A. Syouji, and K. Sakai,
    Appl. Phys. Lett. 87, 093102-1--093102-3 (2005).
  113. Photoluminescence dynamics of exciton-exciton scattering processes in CuI thin films:
    H. Ichida, Y. Kanematsu, T. Shimomura, K. Mizoguchi, D. Kim, and M. Nakayama,
    Phys. Rev. B 72, 045210-1--045210-6 (2005).
  114. Photovoltaic effects on Franz-Keldysh oscillations in photoreflectance spectra: Application to determination of surface Fermi level and surface recombination velocity in undoped GaAs/n-type GaAs epitaxial structures:
    H. Takeuchi, Y. Kamo, Y. Yamamoto, T. Oku, M. Tokuda, and M. Nakayama,
    J. Appl. Phys. 97, pp.063708-1--063708-16 (2005).
  115. Optical properties of high-quality ZnO thin films grown by a sputtering method:
    T. Shimomura, D. Kim, and M. Nakayama,
    J. Lumin. 112, pp.191-195 (2005).
  116. Scintillation properties of CsI:Na thin films from viewpoint of nanoparticle formation:
    M. Nakayama, K. Okuda, N. Ando, and H. Nishimura,
    J. Lumin. 112, pp.156-160 (2005).
  117. Photoluminescence properties of localized states caused by nitrogen alloying in a GaInNAs/GaAs single quantum well:
    K. Nomura, T. Yamada, Y. Iguchi, S. Takagishi, and M. Nakayama,
    J. Lumin. 112, pp.146-150 (2005).
  118. Characteristics of coupled mode of excitonic quantum beat and coherent longitudinal optical phonon in GaAs/AlAs multiple quantum wells:
    T. Furuichi, K. Mizoguchi, O. Kojima, K. Akahane, N. Yamamoto, N. Ohtani, and M. Nakayama,
    J. Lumin. 112, pp.142-145 (2005).
  119. Optical properties of ZnS-CdS alloy quantum dots prepared by a colloidal method:
    K. Tomihira, D. Kim, and M. Nakayama,
    J. Lumin. 112, pp.131-135 (2005).
  120. Intense coherent longitudinal optical phonons in CuI thin films under exciton-excitation conditions:
    O. Kojima, K. Mizoguchi, and M. Nakayama,
    J. Lumin. 112, pp.80-83 (2005).
  121. Preparation of ZnS-CdS alloy quantum dots by chemical synthetic methods and size-selective photoetching effects on size distribution:
    D. Kim, A. Nabeashima, and M. Nakayama,
    Jpn. J. Appl. Phys. 44, pp.1514-1517 (2005).
  122. Enhancement of coherent longitudinal optical phonon oscillations in a GaAs/AlAs multiple quantum well due to intersubband energy tuning under an electric field:
    O. Kojima, K. Mizoguchi, and M. Nakayama,
    Phys. Rev. B. 70, pp.233306-1--233306-4 (2004).
  123. Nondestructive determination of layers producing Franz-Keldysh oscillations appearing in photoreflectance spectra of heterojunctions bipolar transistor structures based on their line-shape analysis:
    H. Takeuchi, Y. Yamamoto, and M. Nakayama,
    J. Appl. Phys. 96, pp.1967-1974 (2004).
  124. Coupled mode of the coherent optical phonon and excitonic quantum beat in GaAs/AlAs multiple quantum wells:
    K. Mizoguchi, O. Kojima, T. Furuichi, M. Nakayama, K. Akahane, N. Yamamoto, and N. Ohtani,
    Phys. Rev. B. 69, pp.233302-1--233302-4 (2004).
  125. Stability of electron-hole plasma in type-I and type-II GaAs-GaAlAs single quantum wells:
    T. Ando, M. Nakayama, and M. Hosoda,
    Phys. Rev. B 69, 165316-1-165316-12 (2004).
  126. Scintillation activated by nanoparticle formation in CsI:Na thin films:
    M. Nakayama, N. Ando, J. Hirai, and H. Nishimura,
    J. Lumin. 108, pp.359-363 (2004).
  127. Enhancement of coherent LO phonons by quantum beats of excitons in GaAs/AlAs multiple quantum wells:
    O. Kojima, K. Mizoguchi, and M. Nakayama,
    J. Lumin. 108, pp.195-199 (2004).
  128. Line-shape analysis of Franz-Keldysh oscillations from a base-emitter junction in an InGaP/GaAs heterojunctions bipolar transistor structure:
    H. Takeuchi, Y. Yamamoto, R. Hattori, T. Ishikawa, and M. Nakayama,
    Physica E 21, pp.693-697 (2004).
  129. Umklapp processes in observation of coherent folded coherent longitudinal acoustic phonons in a GaAs/AlAs long-period superlattice:
    K. Mizoguchi, T. Hino, M. Nakayama, T. Dekorsy, A. Bartel, H. Kurz, and S. Nakashima,
    Physica E, 21, pp.641-650 (2004).
  130. Bose-Einstein statistics behavior of exciton-biexciton photoluminescence decay processes in a GaAs/AlAs type-II superlattice:
    M. Nakayama and H. Ichida,
    Physica E 21, pp.651-655 (2004).
  131. Effects of the dark-exciton state on photoluminescence dynamics in surface-modified CdS quantum dots prepared by a colloidal method:
    D. Kim, T. Mishima, and M. Nakayama,
    Physica E 21, pp.363-366 (2004).
  132. Resonant effects on coherent phonon generation in lead phthalocyanine crystalline films:
    K. Mizoguchi, S. Fujita, and M. Nakayama,
    Appl. Phys. A 47, pp.461-464 (2004).
  133. Interference effects on the phase of Franz-Keldysh oscillations in GaAs/AlAs heterostructures:
    H. Takeuchi, Y. Yamamoto, T. Hattori, T. Ishikawa, and M. Nakayama,
    Jpn. J. Appl. Phys. 42, pp.6772-6778 (2003).
  134. Localization characteristics of photoluminescence decay dynamics in an InGaAsN/GaAs single quantum wells:
    M. Nakayama, K. Tokuoka, K. Nomura, T. Yamda, A. Moto, and S. Takagishi,
    phys. Stat. sol. (b) 240, 352-355 (2003).
  135. Coupling of coherent longitudinal optical phonons to excitonic quantum beats in GaAs/AlAs multiple quantum wells:
    O. Kojima, K. Mizoguchi, and M. Nakayama,
    Phys. Rev. B 68, 155325-1-155325-6 (2003).
  136. Self-consistent calculation of subband occupation and electron-hole plasma effects:
    T. Ando, H. Taniyama, N. Ohtani, M. Nakayama, and M. Hosoda,.
    J. Appl. Phys. 94, pp.4489-4501 (2003).
  137. Photoluminescence properties of ZnO thin films grown by electrocjemical deposition:
    D. Kim, T. Terashita, I. Tanaka, and M. Nakayama.,
    Jpn. J. Appl. Phys. 42, pp.L935-L937 (2003).
  138. Role of the core excitons formed by 4f-4f transitions of Gd3+ on Ce3+ scintillation in Gd2SiO5:C3+
    K. Mori, M. Nakayama, and H. Nishimura,
    Phys. Rev. B 67, pp.165206-1-165206-7 (2003).
  139. Scintillation mechanism of Bi4Ge3O12:
    K. Mori, H. Nishimura, and M. Nakayama,
    Nonlinear Optics 29, pp. 609-613 (2002).
  140. Optical gain of stimulated emission due to exciton-exciton scattering processes in CuI thin films:
    I. Tanaka and M. Nakayama,
    Nonlinear Optics 29, pp. 507-512 (2002).
  141. Excitonic properties in PbI2 thin films grown by vacuum deposition:
    D. Kim, S. Uegaki, and M. Nakayama,
    Nonlinear Optics 29, pp. 391-396 (2002).
  142. Control of Bose-Einstein-statistics behavior of the exciton-biexciton system in a GaAs/AlAs type-II superlattice:
    H. Ichida and M. Nakayama,
    Nonlinear Optics 29, pp.230-209 (2002).
  143. Quantum statistics behavior of the exciton-biexciton system in GaAs/AlAs type-II superlattices:
    M. Nakayama and H. Ichida,
    Phase Transitions 75, pp.979-987 (2002).
  144. Dynamical properties of coherent plasmons coupled with LO phonons in an InAs/GaAs strained superlattice:
    K. Mizoguchi, H. Takeuchi and M. Nakayama,
    Phase Transitions 75, pp.895-902 (2002).
  145. Optoelectronic properties of oriented controlled lead phthalocyanine films:
    K. Mizoguchi, K. Mizui, D. Kim, and M. Nakayama,
    Jpn. J. Appl. Phys. 41, pp.6421-6425 (2002).
  146. Numerically stable and flexible method for solutions of Schrödinger equation with self-interaction of carriers in quantum wells:
    T. Ando, H. Taniyama, N. Ohtani, M. Hosoda, and M. Nakayama,
    IEEE J. Quantum Electronics 38, pp.1372-1383 (2002).
  147. Stimulated emission due to the inelastic scattering from the heavy-hole exciton to the light-hole exciton in CuI thin films:
    I. Tanaka and M. Nakayama,
    J. Appl. Phys. 92, pp.3511-3516 (2002).
  148. Self-narrowing and photoetching effects on the size-distribution of CdS quantum dots prepared by a reverse micelle method:
    D. Kim, N. Teratani, and M. Nakayama,
    Jpn. J. Appl. Phys. 41, pp.5064-5068 (2002).
  149. Photoluminescence from high G-electron subbands and intersubband electroluminescence using G-X carrier injection in a simple GaAs/AlAs superlattice:
    C. Domoto, T. Nishimura, N. Ohtani, K. Kuroyanagi, P.O. Vaccaro, T. Aida, and M. Nakayama,
    Jpn. J. Appl. Phys. 41, pp.5073-5077 (2002).
  150. Effects of a miniband structure on coherent LO phonon-plasmon coupled modes in an (InAs)1/(GaAs)30 strained-layer superlattice:
    H. Takeuchi, K. Mizoguchi, T. Aida, and M. Nakayama,
    Physica B 314, pp.422-426 (2002).
  151. Coherent folded acoustic phonons in GaAs/AlAs superlattices with limited periodicity:
    H. Takeuchi, K. Mizogucchi, T. Hino, and M. Nakayama,
    Physica B 316-317, pp.308-310 (2002).
  152. Scintillation from NaI nanoparticles formed in CsI:Na thin films:
    M. Nakayama, N. Ando, T. Miyoshi, J. Hirai, and H. Nishimura,
    Jpn. J. Appl. Phys. 41, pp.L263-L265 (2002).
  153. Finite-size effects on coherent folded acoustic phonons in GaAs/AlAs superlattices:
    K, Mizoguchi, H. Terauchi, T. Hino, and M. Nakayama,
    J. Phys.: Condens. Matter 14, pp.L103-L109 (2002).
  154. Quantum beats between heavy-hole and light-hole excitons in CuI thin films:
    I. Tanaka, K. Mizoguchi, and M. Nakayama,
    J. Lumin. 94-95, pp.385-388 (2001).
  155. Boson characteristics of the exciton-biexciton system in a GaAs/AlAs type-II superlattices:
    H. Ichida and M. Nakayama,
    J. Lumin. 94-95, pp.379-383 (2001).
  156. Transformation from biexcitons to electron-hole plasma in photoluminescence properties of a GaAs/AlAs multiple-quantum-well structures,
    H. Ichida, K. Tsuji, K. Mizoguchi, H. Nishimura, and M. Nakayama,
    Int. J. Modern. Phys. B 12, pp.3793-3796 (2001).
  157. Photo-irradiation effects on preparation of colloidal quantum dots and their surface modification:
    D. Kim, N. Teratani, K. Mizoguchi, H. Nishimura, and M. Nakayama,
    Int. J. Modern. Phys. B 12, pp.3825-3828 (2001).
  158. Scintillation mechanism of Ce3+ doped Gd2SiO5:
    K. Mori, M. Yokota, H. Nishimura, M. Nakayama, and H. Ishibashi,
    Int. J. Modern. Phys. B 12, pp.3877-3880 (2001).
  159. Control of temperature dependence of exciton energies in CuI-CuBr alloy thin films grown by vacuum deposition:
    I. Tanaka, K. Sugimoto, D. Kim, H. Nishimura, and M. Nakayama,
    Int. J. Modern. Phys. B 12, pp.3977-3980 (2001).
  160. Size-selective photoetching effects on preparation of semiconductor quantum dots with a uniform size:
    D. Kim, N. Taranani, K. Mizoguchi, and M. Nakayama,
    Trans. MRS Jpn. 26, pp.1287-1290 (2001).
  161. Simultaneous observation of coherent GaSb-like and AlSb-like longitudinal optical phonons in GaSb/AlSb superlattices:
    H. Takeuchi, K. Mizoguchi, M. Nakayama, K. Kuroyanagi, T. Aida, M. Nakajima, and H. Harima,
    J. Phys. Soc. Jpn. 70, pp.2596-2602 (2001).
  162. Evidence for quantum statistics of the exciton-biexciton system in a GaAs/AlAs type-II superlattice:
    H. Ichida and M. Nakayama,
    Phys. Rev. B 63, pp.195316-1-195316-6 (2001).
  163. Intersubband electroluminescence using X-ƒ‘ carrier injection in a GaAs/AlAs superlattice:
    C. Domoto, N. Ohtani, K. Kuroyanagi, P.O. Vaccaro, H. Takeuchi, and M. Nakayama,
    Appl. Phys. Lett. 77, pp.848-850 (2000).
  164. Photoluminescence and carrier transport properties via the intersubband scattering in a GaAs/AlAs superlattice:
    M. Ando, M. Nakayama, H. Takeuchi, H. Nishimura, N. Ohtani, N. Egami, M. Hosoda, and H. Mimura,
    J. Lumin. 87-89, pp.411-414 (2000).
  165. Dynamical aspects of the core excitons formed by the 4f-4f transitions of Gd3+ in Gd2SiO5:
    K. Mori, H. Nishimura, M. Nakayama, H. Ishibashi,
    J. Lumin. 87-89, pp.266-268 (2000).
  166. Photoluminescence from heavy-hole and light-hole excitons split by thermal strain in CuI thin films:
    I. Tanaka, D. Kim, M. Nakayama, and H. Nishimura,
    J. Lumin. 87-89, pp.257-259 (2000).
  167. Stimulated emission from exciton-exciton scattering in CuBr thin films:
    H. Ichida, M. Nakayama, and H. Nishimura,
    J. Lumin. 87-89, pp.235-237 (2000).
  168. Excitonic processes in GaAs/AlAs type-II superlattices: 
    M. Nakayama,
    J. Lumin. 87-89, pp.15-19 (2000).
  169. Oscillator strength of type-II light-hole exciton in InGaAs/GaAs strained single quantum wells:
    M. Nakayama, T. Nakanishi, H. Nishimura, M. Takahashi, and N. Egami,
    Physica E 7, pp.567-571 (2000).
  170. Observation of compositional fluctuation in GaNAs alloys grown by metalorganic vapor-phase epitaxy:
    M. Takahashi, A. Moto, S. Tanaka, S. Takagishi, M. Nakayama, K. Matsuda, and T. Saiki,
    J. Cryst. Growth 211, pp461-466 (2000).
  171. Electric-field-induced combination of Wannier-Stark localization and type-I-type-II crossover in a marginal type-I GaAs/AlAs superlattice:
    N. Ohtani, C. Domoto, N. Egami, H. Mimura, M. Ando, M. Nakayama, and M. Hosoda,
    Phys. Rev. B 61, pp.7505-7510 (2000).
  172. Light-hole Stark-ladder photoluminescence induced by heavy-hole|light-hole resonance in a GaAs/InAlAs superlattice:
    K. Kuroyanagi, N. Ohtani, N. Egami, K. Tominaga, M. Hosoda, H. Takeuchi, and M. Nakayama,
    Physica B 272, pp.198-201 (1999).
  173. Thermal-Strain-Induced Splitting of Heavy- and Light-Hole Exciton Energies in CuI Thin Films Grown by Vacuum Evaporation:
    D. Kim, M. Nakayama, O. Kojima, I. Tanaka, H. Ichida, and T. Nakanishi, and H. Nishimura,
    Phys. Rev. B 60, pp.13879-13884 (1999).
  174. Bound-biexciton photoluminescence in CuCl thin films grown by vacuum deposition:
    M. Nakayama, H. Ichida, and H. Nishimura,
    J. Phys.: Condens. Matter 11, pp.7653-7662 (1999).
  175. Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy:
    K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama,
    Phys. Rev. B 60, pp.8262-8266 (1999).
  176. Coherent acoustic phonons in semiconductor superlattices:
    T. Dekorsy, A. Bartels, H. Kurtz, K. Mizoguchi, M. Nakayama, and K. Kohler,
    Phys. Stat. Sol. (b) 215, pp.425-430 (1999).
  177. Influence of strain effects on hole-subband resonances in GaAs/InAlAs superlattices:
    K. Kuroyanagi, N. Ohtani, N. Egami, K. Tominaga, and M. Nakayama,
    Appl. Surface Sci. 142, pp.533-636 (1999).
  178. Franz-Keldysh oscillations at the above-barrier miniband in a GaAs/AlxGa1-xAs superlattice:
    M. Ando, M. Nakayama, H. Nishimura, and K. Fujiwara,
    Superlattices and Microstruc. 25, pp.61-66 (1999).
  179. Study of coherent folded acoustic phonons in semiconductor superlattices by pump-probe technique:
    K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama,
    Physica B 263-264, pp.48-50 (1999).
  180. Photoluminescence detection of the X-electron resonance in a GaAs/AlAs type-II superlattice:
    M. Nakayama, M. Ando, Y. Kumamoto, H. Nishimura, N. Ohtani, N. Egami, K. Fujiwara, M. Hosoda,
    Phys. Rev. B 58, pp.7216-7221 (1998).
  181. Resonance effect of coherent folded acoustic phonons generated by ultra-short pulses in GaAs/Alas superlattices:
    K. Mizoguchi, K. Matsutani, M. Hase, S. Nakashima, and M. Nakayama,
    Physica B 249-251, pp.887-890 (1998).
  182. Type-II biexcitons in GaAs/AlAs short-period superlattices:
    M. Nakayama, A. Soumura, and H. Nishimura,
    Physica E 2, pp.340-344 (1998).
  183. Real-time-space dynamics of zone-folded phonons in GaAs/AlAs superlattices:
    T. Mishina, Y. Iwazaki, Y. Masumoto, and M. Nakayama,
    Solid State Commun. 107, pp.281-284 (1998).
  184. Coherent dynamics of zone-folded acoustic phonons in GaAs/AlAs superlattices:
    T. Mishina, Y. Iwazaki, Y. Masumoto, and M. Nakayama,
    J. Lumin. 76&77, pp.564-566 (1998).
  185. Wavefunction delocalization of strongly-localized Stark-ladder states in a GaAs/AlAs superlattice:
    M. Ando, M. Nakayama, H. Nishimura, M. Hosoda, N. Ohtani, N. egami, and K. Fujiwara,
    Solid State Electronics 42, pp.1499-1503 (1998).
  186. Influence of ƒ‘-X resonance on photocurrent-voltage characteristics in GaAs/InAlAs strained superlattices:
    K. Kuroyanagi, N. Ohtani, N. Egami, K. Tominaga, and M. Nakayama,
    Jpn. J. Appl. Phys. 37, pp.1650-1653 (1998).
  187. Strain-induced splitting of heavy-hole and light-hole exciton energies in NaI thin films:
    H. Nishimura, K. Kitano, S. Kawase, and M. Nakayama,
    Phys. Rev. B 57, pp.2592-2596 (1998).
  188. Franz-Keldysh oscillations at the miniband edge in a GaAs/AlxGa1-xAs superlattice:
    M. Ando, M. Nakayama, H. Nishimura, H. Schneider, and K. Fujiwara,
    Superlattices and Microstruc. 22, pp.459-465 (1997).
  189. Photoluminescence from the barrier-X state in GaAs/InAlAs strained superlattices under applied bias voltages:
    K. Kuroyanagi, N. Ohtani, N. Egami, K. Tominaga, and M. Nakayama,
    Phys. Stat. Sol. (b) 204, pp.187-190 (1997).
  190. Coherent reflected pulses of exciton polaritons in multiple quantum wells at Brewsterfs-angle incidence:
    B.R. Hyun, T. Mishina, Y. Masumoto, and M. Nakayama,
    Phys. Rev. B 56, pp.R12780-R12783 (1997).
  191. Miniband structures and effective masses of GaAs/AlAs superlattices with ultra-thin AlAs layers:
    M. Nakayama, T. Nakanishi, K. Okajima, M. Ando, and H. Nishimura,
    Solid State Commun. 102, pp.803-807 (1997).
  192. Observation of ƒ‘-X resonances in type-I GaAs/AlAs semiconductor superlattices:
    M. Hosoda, H. Mimura, N. Ohtani, K. Tominaga, K. Fujita, T. Watanabe, H. Inomata, and M. Nakayama,
    Phys. Rev. B 55, pp.13689-13696 (1997).
  193. Excitons consisting of two- and three-dimensional particles:
    Z. S. Piao, M. Nakayama, and H, Nishimura,
    J. Phys. Soc. Jpn. 66, pp.1567-1568 (1997).
  194. Hot exciton in CuCl and CuBr crystalline thin fllms grown by vacuum deposition:
    M. Nakayama, A. Soumura, K. Hamasaki, H. Takeuchi, and H. Nishimura,
    Phys. Rev. B 55, pp.10099-10104 (1997).
  195. Observation of coherent acoustic phonons in Fibonacci superlattices:
    K. Mizoguchi, K. Matsutani, S. Nakashima, T. Dekorsy, H. Kurz, and M. Nakayama,
    Phys. Rev. B 55, pp.9336-9339 (1997).
  196. Influence of ƒ‘-X resonances on ƒ‘ground state electron occupation in type-I GaAs/AlAs superlattice:
    M. Hosoda, K. Tominaga, N. Ohtani, H. Mimura, and M. Nakayama,
    Appl. Phys. Lett. 70, pp.1581-1583 (1997).
  197. Polarization choices in exciton-biexciton system of GaAs quantum wells:
    S. Adachi, T. Miyashita, S. Takeyama, Y. Takagi, and M. Nakayama,
    Phys. Rev. B 55, pp.1654-1660 (1997).
  198. Dynamical processes of excitons under magnetic fields in GaAs/AlAs superlattices:
    T. Komatsu, E. Kawahata, T. Karasawa, I. Akai, V.F. Aguekian, M. Nakayama, K. Uchida, and N. Miura,
    J. Lumin. 66&67, pp.468-472 (1996).
  199. Hydrostatic pressure effects on the free and self-trapped exciton states in CsI:
    T. Tsujimoto, H. Nishimura, and M. Nakayama,
    Phys. Rev. B 54, pp.16579-16584 (1996).
  200. Binding energies and envelope functions of light-hole excitons in GaAs/InxGA1-xAs strained quantum wells:
    Z. S. Piao, M. Nakayama, and H. Nishimura,
    Phys. Rev. B 54, pp.10312-10315 (1996).
  201. Flexible approach to exciton binding energies in type-I and type-II quantum wells:
    Z. S. Piao, M. Nakayama, and H. Nishimura,
    Phys. Rev. B 53, pp.1485-1489 (1996).
  202. Pseudodirect biexcitons in GaAs/AlAs type-II superlattices:
    M. Nakayama, K. Suyama, and H. Nishimura,
    IL Nuovo Cimento, 17D, pp.1629-1633 (1995).
  203. Optical properties of RbI thin films grown from vapor phase onto alkali-halide and quartz substrates:
    H. Nishimura, T. Ohashi, S. Kawase, and M. Nakayama,
    J. Phys. Soc. Jpn. 61, pp. 3514-3521 (1995).
  204. Photoreflectance study of folded above-barrier states in (InAs)1/(GaAs)m strained-layer superlattices:
    M. Nakayama, T. Fujita, and H. Nishimura,
    Superlattices and Microstruc. 17, pp.31-34 (1995).
  205. Biexciton formation in GaAs/AlAs type-II superlattices under extremely low excitation powers:
    M. Nakayama, K. Suyama, and H. Nishimura,
    Phys. Rev. B 51, pp.7870-7873 (1995).
  206. Electric-field effects on above-barrier states in a GaAs/AlxGa1-xAs superlattice:
    M. Nakayama, M. Ando, I. Tanaka, H. Nishimura, H. Schneider, and K. Fujiwara,
    Phys. Rev. B 51, pp.4236-4241 (1995).
  207. Origin of the 4.1-eV luminescence in pure CsI scintillator:
    H. Nishimura, M. Sakata, T. Tsujimoto, and M. Nakayama,
    Phys. Rev. B 51, pp. 2167-2172 (1995).
  208. Electric-field dependence of oscillator strength of Stark-ladder transitions in a GaAs/AlAs superlattice:
    I. Tanaka, M. Nakayama, H. Nishimura, K. Kawashima, and K. Fujiwara,
    Solid State Commun. 91, pp. 385-388 (1994).
  209. Coherent oscillations of zone-folded phonon modes in GaAs/AlAs superlattices:
    A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama,
    Phys. Rev. Lett. 73, pp. 740-743 (1994).
  210. Effects of hydrostatic pressure on the self-trapped exciton luminescence in KI:
    H. Nishimura, T. Tsujimoto, M. Nakayama, T. Horiguchi, and M. Kobayashi,
    J. Phys. Soc. Jpn. 63, pp. 2818-2824 (1994).
  211. Spectral changes of the self-trapped exciton luminescence in RbI under hydrostatic pressure:
    H. Nishimura, T. Tsujimoto, M. Nakayama, S. Morita, and M. Kobayashi,
    J. Lumin. 62, 41-47 (1994).
  212. Effect of hydrostatic pressure on the self-trapped exciton luminescence in CsI:
    T. Tsujimoto, H. Nishimura, M. Nakayama, H. Kurisu, and T. Komatsu,
    J. Lumin. 60&61, pp.798-801 (1994).
  213. ƒ‘-X mixing effects on pseudodirect exciton transitions in GaAs/AlAs type-II superlattices:
    M. Nakayama, K. Imazawa, I. Tanaka, and H, Nishimura,
    Phys. Rev. B 49, pp.13564-13571 (1994).
  214. Resonant coupling between buried single-quantum-well and Wannier-Stark-localization states in a GaAs/AlAs superlattice:
    I. Tanaka, M. Nakayama, H. Nishimura, K. Kawashima, and K. Fujiwara,
    Solid State Electronics 37, pp.863-866 (1994).
  215. Effects of uniaxial stress on self-trapped excitons in RbI:
    H. Nishimura, T. Tsujimoto, S. Morimoto, and M. Nakayama,
    J. Lumin. 58, pp.247-249 (1994).
  216. Coherent oscillation of zone-folded phonons in GaAs-AlAs superlattices:
    A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama,
    J. Lumin. 58, pp.265-267 (1994).
  217. ƒ‘-X mixing effects on photoluminescence intensity in GaAs/AlAs type-II superlattices:
    M. Nakayama, K. Imazawa, I. Tanaka, and H, Nishimura,
    Solid State Commun. 88, pp.43-46 (1993).
  218. Critical electric field for Stark-ladder formation in a GaAs/AlAs superlattice:
    I. Tanaka, M. Nakayama, H. Nishimura, K. Kawashima, and K. Fujiwara,
    Phys. Rev. B 48, pp.2787-2790 (1993).
  219. Incident-photon energy dependence of Raman-scattering profiles by folded acoustic phonons in GaAs/AlAs superlattices:
    H. Kushibe, M. Nakayama, and M. Yokota,
    Phys. Rev. B 47, pp.9566-9571 (1993).
  220. Optical properties of (InAs)1/(GaAs)m strained-layer superlattices:
    M. Nakayama, T. Fujita, I. Tanaka, H. Nishimura, and H. Terauchi,
    Jpn. J. Appl. Phys. 32, Suppl. 32-1, pp.160-162 (1993).
  221. Hole-subband-order reversal in GaAs/InxAl1-xAs strained-layer superlattice investigated by photoreflectance spectroscopy:
    M. Nakayama, T. Doguchi, I. Tanaka, and H. Nishimura,
    Superlattices and Microstruc. 12, pp.333-336 (1992).
  222. Electroreflectance intensity for resonant coupling between Wannier-Stark localization in a GaAs/AlAs superlattices:
    I. Tanaka, M. Nakayama, H. Nishimura, K. Kawashima, and K. Fujiwara,
    Phys. Rev. B 46, pp.7656-7661 (1992).
  223. Photoreflectance study of hole-subband structures in GaAs/InxAl1-xAs strained-later superlattices:
    M. Nakayama, T. Doguchi, and H. Nishimura,
    J. Appl. Phys. 72, pp.2372-2376 (1992).
  224. Electroreflectance and transfer-matrix analysis of Stark-ladder transitions in a GaAs/AlAs superlattice:
    M. Nakayama, I. Tanaka, H. Nishimura, K. Kawashima, and K. Fujiwara,
    Surface. Sci. 267, pp.537-540 (1992).
  225. Electroreflectance detection of resonant coupling between Wannier-Stark localization states in a GaAs/AlAs superlattice:
    M. Nakayama, I. Tanaka, H. Nishimura, K. Kawashima, and K. Fujiwara,
    Phys. Rev. B 44, pp.5935-5938 (1991).
  226. Luminescence associated with self-trapped excitons in LiBr:
    K. Fujiwara, S. Nagata, H. Nishimura, M. Nakayama, T. Komatsu, and S. Hashimoto,
    J. Lumin. 48&49, pp.107-110 (1991).
  227. High sensitivity of electroreflectance to Stark-ladder transitions in a GaAs/AlAs superlattice:
    M. Nakayama, I. Tanaka, T. Doguchi, H. Nishimura, K. Kawashima, and K. Fujiwara,
    Solid State Commun. 77, pp.303-306 (1991).
  228. Interference effects on photoreflectance line shapes of excitons in GaAs/AlAs superlattices:
    M. Nakayama, I. Tanaka, T. Doguchi, and H. Nishimura,
    Jpn. J. Appl. Phys. 29, pp.L1760-L1762 (1990).
  229. Anisotropic properties of photoluminescence in a GaAs/AlAs type-II superlattice:
    M. Nakayama, I. Kimura, I. Tanaka, and H. Nishimura,
    Solid State Commun. 76, pp.217-220 (1990).
  230. Interface-phonon polaritons in GaAs/AlAs heterostructures:
    M. Nakayama, M. Ishida, and N. Sano,
    Surface Sci. 228, pp.131-134 (1990).
  231. Raman scattering in long-period superlattices of GaAs, AlAs, GaAlAs layers:
    S. Nakashima, K. Tahara, M. hangyo, and M. Nakayama,
    Phys. Rev. B 41, pp.5221-5226 (1990).
  232. Photoluminescence properties of GaAs/AlAs short-period superlattices:
    M. Nakayama, I. Tanaka, I. Kimura, and H. Nishimura,
    Jpn. J. Appl. Phys. 29, pp.41-47 (1990).
  233. The atomic diffusion process in Al-Mn superlattices examined by annealing treatments:
    Y. Nishihata, M. Nakayama, N. Sano, and H. Terauchi,
    J. Phys: Condens. Matter 1, pp.7803-7808 (1989).
  234. Anisotropy of quantum-size effects in (001)- and (111)-oriented GaAs/Al0.3Ga0.7As multiple quantum wells:
    M. Nakayama, I. Kimura, H. Nishimura, T. Komatsu, and Y. Kaifu,
    Solid State Commun. 71, pp.1137-1140 (1989).
  235. Photoluminescence spectra of (GaAs)12/(AlAs)12 superlattice under high pressure:
    K. Takarabe, S. Minomura, M. Nakayama, and H. Kato,
    J. Phys. Soc. Jpn. 58, pp.2242-2243 (1989).
  236. ƒ‘-X crossover in GaAs/AlAs superlattices:
    H. Kato, Y. Okada, M. Nakayama, and Y. Watanabe,
    Solid State Commun. 70, pp.535-539 (1989).
  237. Raman scattering by interface-phonon polaritons in a GaAs/AlAs heterostructures:
    M. Nakayama, M. Ishida, and N. Sano,
    Phys. Rev. B 38, pp.6348-6351 (1988).
  238. X-ray diffraction patterns of configurational Fibonacci lattices:
    H. Terauchi, Y. Noda, K. Kamigaki, S. Matsunaka, M. Nakayama, H. kato, N. Sano, and Y. Yamada,
    J. Phys. Soc. Jpn. 57, pp.2416-2424 (1988).
  239. Single crystals of Al-Mn superlattices grown by molecular-beam epitaxy:
    Y. Nishihata, M. Nakayama, N. Sano, and H. Terauchi,
    J. Appl. Phys. 63, pp.319-323 (1988).
  240. Intersubband transitions in GaAs-AlxGa1-xAs modulation-doped superlattices:
    M. Nakayama, H. Kuwahata, H. Kato , and K. Kubota.
    Appl. Phys. Lett. 51, pp.1741-1743 (1987).
  241. Growth and characterization of InAs/InxAl1-xAs strained-layer superlattices:
    H. Kato, N. Iguchi, K. Kamigaki, S. Chika, M. Nakayama, N. Sano, and H. Terachi,
    J. Appl. Phys. 62, pp.2057-2061 (1987).
  242. Folded acoustic phonons in (Al,Ga)As quasiperiodic superlattices:
    M. Nakayama, H. Kato, and S. Nakashima,
    Phys. Rev. B 36, pp.3472-3474 (1987).
  243. X-ray diffraction analysis of buffer layer effects on lattice distortions of strained layer superlattices:
    K. Kamigaki, H. Sakashita, H. Kato, M. Nakayama, N. Sano, and H. Terauchi,
    J. Appl. Phys. 62, pp.1124-1127 (1987).
  244. Structure of GaAs-In0.2Ga0.8As heterojunction interface studied by electron spectroscopies:
    M. Iwai, Y. Watanabe, H. Kato, M. Nakayama, and N. Sano,
    Thin Solid Films 141, pp.291-297 (1987).
  245. Single crystals of Nb-Ta superlattices grown by molecular-beam epitaxy:
    Y. Nishihata, M. Nakayama, H. kato, N. Sano, and H. Terauchi,
    J. Appl. Phys. 60, pp.3523-3526 (1986).
  246. Finite-size effects on Raman scattering from GaAs-AlAs superlattices:
    M. Nakayama, K. Kubota, H. Kato, and N. Sano,
    J. Appl. Phys. 60, pp.3589-3292 (1986).
  247. X-ray study of misfit strain relaxation in lattice-mismatched heterojunctions:
    K. Kamigaki, H. Sakashita, H. Kato, M. Nakayama, N. Sano, and H. Terauchi,
    Appl. Phys. Lett. 49, pp.1071-1073 (1986).
  248. Temperature dependence of molecular-beam epitaxial growth rates for InxGa1-xAs and InxAl1-xAs:
    S. Chika, H. Kato, M. Nakayama, and N. Sano,
    Jpn. J. Appl. Phys. 25, pp.1441-1442 (1986).
  249. Effective-mass reversal on InxAl1-xAs/GaAs strained-layer superlattices:
    H. Kato, N. Iguchi, S. Chika, M. Nakayama, N. Sano,
    Jpn. J. Appl. Phys. 25, pp.1327-1331 (1986).
  250. Lattice distortions in GaAs-AlAs and GaAs-InAs superlattices:
    H. Terauchi, K. Kamigaki, H. Sakashita, N. Sano, H. Kato, and M. Nakayama,
    Surface Sci. 174, pp.592-597 (1986).
  251. Raman scattering from GaAs-Al0.5GA0.5As-AlAs polytype superlattices:
    M. Nakayama, K. Kubota, S. Chika, H. Kato, N. Sano,
    Solid State Commun. 58, pp.475-477 (1986).
  252. Effects of buffer layers in GaAs- In0.2Al0.8As strained-layer superlattice
    M. Nakayama, K. Kubota, S. Chika, H. Kato, N. Sano,
    Appl. Phys. Lett. 48, pp.281-283 (1986).
  253. Photoluminescence study of InxAl1-xAs-GaAs strained-layer superlattices:
    H. Kato, N. Iguchi, S. Chika, M. Nakayama, N. Sano,
    J. Appl. Phys. 59, pp.588-592 (1986).
  254. Raman study of GaAs-InxAl1-xAs strained-layer superlattices:
    M. Nakayama, K. Kubota, T. Kanata, S. Chika, H. Kato, N. Sano,
    J. Appl. Phys. 58, pp.4342-4345 (1985).
  255. X-ray studies of semiconductor superlattices grown by molecular-beam epitaxy:
    H. Terauchi, S. Sekimoto, K. Kamigaki, H. Sakashita, N. Sano, H. Kato, and M. Nakayama,
    J. Phys. Soc. Jpn. 54, pp.4576-4585 (1985).
  256. Zone-folding effects on phonons in GaAs-AlAs superlattices:
    M. Nakayama, K. Kubota, T. Kanata, S. Chika, H. Kato, N. Sano,
    Jpn. J. Appl. Phys. 24, pp.1331-1334 (1985).
  257. Raman scattering from GaAs-AlAs monolayer-controlled superlattices:
    M. Nakayama, K. Kubota, S. Chika, H. Kato, N. Sano,
    Solid State Commun. 53, pp.493-495 (1985).
  258. X-ray study on impurity diffusion in a GaAs-AlAs superlattice:
    H. Terauchi, S. Sekimoto, S. Sano, H. Kato, and M. Nakayama,
    Appl. Phys. Lett. 44, pp.971-973 (1984).
  259. Raman scattering from GaAs-InxGa1-xAs strained-layer superlattices:
    M. Nakayama, K. Kubota, H. Kato, N. Sano,
    Solid State Commun. 51, pp.343-345 (1984).
  260. Mono- and Bi-layer superlattices of GaAs and AlAs:
    N. Sano, H. Kato, M. Nakayama, S. Chika, and H. Terauchi,
    Jpn. J. Appl. Phys. 23, pp.L640-L641 (1984).
  261. Characterization of GaAs-AlAs superlattices by laser-Raman spectroscopy:
    K. Kubota, M. Nakayama, H. Kato, and N. Sano,
    Solid State Commun. 49, pp.157-159 (1984).